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We reassess the problem of renormalization in finite temperature field theory (FTFT). A
new point of view elucidates the relation between the ultraviolet divergences for T = 0
and T �= 0 theories and makes clear the reason why the ultraviolet behavior keeps
unaffected when we consider the FTFT version associated to a given quantum field
theory (QFT). The strength of the derivation one lies on the Hörmander’s criterion for
the existence of products of distributions in terms of the wavefront sets of the respective
distributions. The approach allows us to regard the FTFT both imaginary and real time
formalism at once in a unified way in the contour ordered formalism.
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1. INTRODUCTION

As it occurs in QFT, the FTFT also exhibit ultraviolet divergences. The prob-
lem of how to make sense out of the physical meaning behind the divergences in
a mathematically proper way was satisfactorily solved by the known renormal-
ization procedure. There are some well established prescriptions currently used in
QFT to attribute meaning to the initially divergent terms of the perturbation series
associated to the quantities of interest. The latter can however be defined only
up to certain renormalization ambiguities which, in principle, can be determined
from physical reasonings. In facing the distinctions between the FTFT and QFT
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CEP:30130-131; e-mail: dhtf@terra.com.br

383
0020-7748/07/0200-0383/0 C© 2006 Springer Science+Business Media, Inc.



384 Franco and Acebal

propagators, some questions take place. Once the divergences are related to certain
ill-defined products of distributions, the FTFT propagator might imply changes
in the conditions for the existence of the products and introduce a temperature-
dependent renormalization problem. The ambiguities of the renormalization pro-
cedure associated to the physical parameters could then exhibit qualitative changes
due to the temperature-dependence. Further, it could also change the asymptotic
divergent behavior and consequently the amount of arbitrariness involved. The
FTFT propagator being separable into temperature-dependent and -independent
pieces, causes the mixing of the divergences and temperature-dependent terms in
crossing products in the higher order terms of the perturbation expansion. Depend-
ing on the renormalization procedure adopted some of those facts can become not
clear. On physical grounds, one cannot expect that the differences would have
fundamental consequences to the UV behavior because it arises from the short
distance limit which is unaffected by the temperature once the thermal part of
the propagator has support on the mass shell and decays rapidly with growing
momentum because of the Bose-Einstein (or Fermi-Dirac) distribution function.
This question is not really new and has been investigated by many authors using
various techniques, each one putting emphasis on different aspects of the prob-
lem. Let us mention for instance the TFD proof (Matsumoto et al., 1984), the RFT
method (Niemi and Semenoff, 1984), the BPHZ momentum space subtraction
procedure (Gomes and Köberle, 1977; Landsman and Weert, 1987) besides the
framework of axiomatic quantum field theories at finite temperature (Steinmann,
1995). More recently, it has been given by Kopper et al. (2001) a rigorous proof
of the renormalizability of the massive ϕ4

4 theory at finite temperature based in the
framework of Wilson’s flow equations, to all orders of the loop expansion.

In this article, we take the opportunity to shed a new light on the series of
studies by approaching the problem from a central aspect of the renormalization
which lies on the lack of definition of the distributional product in some particular
context present in the perturbation series. The analysis is done under the light of
a systematic use of the ideas and notions of the distribution theory. Microlocal
methods of distributions in x-space are used in order to characterize the singular
spectrum in terms of the wavefront set of the propagators and to determine a suffi-
cient condition for the existence of such products (Hörmander, 1990). The asymp-
totic behavior of products of distributions near the singular points is evaluated by
calculating the scaling degree and the singular order of distributions (Hollands
and Wald, 2001, 2002; Steinmann, 1971) which govern the amount arbitrariness
present in the renormalization procedure. The whole apparatus provide us with
all the information we need in order to formulate the renormalization as the well
posed mathematical problem of the extension of products of distributions to coin-
cident points (Popineau and Stora, 1982; Brunetti and Fredenhagen, 2000). One
shows that the divergences found in FTFT are, in fact, of the same nature as those
ones in QFT. At each order, the problem of the extension in FTFT is shown to
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reduce to the analogous one of the ordinary QFT. As a consequence, it is proved
that the amount of arbitrariness in the renormalization procedure, as well as the
type of the ambiguities remain the same when passing from a given QFT to the
associated FTFT version. More important, our analysis allows to investigating the
issue, as much as possible, in a model independent way and free from the technical
difficulties of thermal loop calculations common to the various conventional ap-
proaches both in ITFs and RTFs. Moreover, it allows to adopting the generalized
unified framework of the contour ordered formalism (COF) considering at a time
both ITF and RTF.

The outline of the article is as follows. We begin in Section 2 by describing
some basics on the microlocal analysis of singularities where the wavefront set of
a distribution is introduced together with a sufficient condition for the existence
of products of distributions based on its wavefront set. In Section 3, we reproduce
a derivation of the FTFT free two-point function, and we prove the required
wavefront set properties of this two-point function, in order to be able to insert
it in the renormalization scheme. This section also includes a discussion of some
examples. The extent of the analysis of these examples is to indicate where extra
singular terms may come into the picture–over and those above appearing in usual
QFT at T = 0. Section 4 contains the final considerations.

2. MICROLOCAL STUDY OF SINGULARITIES

The UV divergences are a QFT inherent problem, because the fields, as
well as its correlation functions, having distributional character are defined on
a continuous space-time. The perturbation expansions in QFT are made of the
product of such distributions. However, products of distributions with overlap-
ping singularities are in general not well-defined. Hence, it becomes convenient
to shed some light on the problem of finding the conditions under which one has
or not a well-defined product of distributions. Among the distributional analysis
techniques, the framework of the microlocal analysis (Hörmander, 1990) is fairly
suitable for the study of the UV divergences. The term microlocal analysis refers
to a set of techniques of relatively recent origin which have turned out to be partic-
ularly useful in analyzing partial differential equations with variable coefficients,
including those of particular interest to quantum field theory. In what follows, we
shall describe an analytical method which provides sufficient conditions for the
existence of the product of distributions based on the concept of the wavefront set
(WFS) of a distribution f , denoted by WF (f ). It is a refined description of the
singularity spectrum. More important, WFS not only describes the set where a
distribution is singular, but also localizes the frequencies that constitute these sin-
gularities. Similar notion was developed in some versions by Sato (Sato, 1969) and
Iagolnitzer (Iagolnitzer, 1975). The present definition is due to Hörmander
(Hörmander, 1990) who has made use of this terminology due to an existing
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analogy between the “propagation” of singularities of distributions and the classi-
cal construction of propagating waves by Huyghens.

Let f be a distribution on an open set X ⊂ R
d ; then the singular support of

f is the complement of the largest relatively open subset X1 of X whereon f is
smooth (f |X1 ∈ C∞

0 ). A point x0 is said to be a non-singular point of a distribution
f if there exists a cutoff function φ ∈ C∞

0 (V ), with support in some neighborhood
V of x0, such that the Fourier transform

̂f φ(k) =
∫

ddx f (x)φ(x)eikx ,

is of fast decrease for all directions k ∈ R
d . By a fast decrease in the k direction

of ̂f (k), one must understand that there is a constant CN , for all (N = 1, 2, 3 . . .),
such that (1 + |k|)N | ̂f (k)| ≤ CN remains bounded. In particular, if x0 is a singular
point of the distribution f , and φ ∈ C∞

0 (V ) is such that φ(x0) �= 0; then φf is also
of compact support and singular in x0. In this case, can still occur some directions
in k-space over which ̂φf is asymptotically bounded. A direction k for which the
Fourier transform ̂f (k) of f (x) ∈ D

′(V ) shows to be of fast decrease is called
to be a regular direction of ̂f (k). This suggests that we can single out singular
directions as well as singular point, and for the establishment of these concepts
only the behavior of f and of ̂f restricted to an arbitrarily small neighborhood of
the singular point x0 is relevant.

Let f (x) be an arbitrary distribution not necessarily of compact support on
an open set X ⊂ R

d . Then, the set of all pairs composed first by the its singular
points x ∈ X and second by the associated nonzero singular directions k,

WF(f ) = {

(x0, k) ∈ X × (Rd\0) | k ∈ �x(f )
}

, (2.1)

is called wavefront set of f . The �x(f ) is defined to be the complement of
the set of all k ∈ R

d\0 with respect to R
d\0, for which there is an open conic

neighborhood M of k such that ̂φf is of fast decrease on M . In short, to determine
whether (x0, k) is in WFS of f one must first to localize f around x0, to next
obtain Fourier transform ̂f and finally to look at the decay in the direction k.

Example 1. A small “point” scatterer on R.

V (x) = δ(x) ∝
∫

ddx 1e− ikx ,

i.e., ̂V = 1 does not decay in any direction k: WF (δ) = {(0, k) | k �= 0} has sin-
gularities in all directions.

Remark 1. We now collect some basic properties of the WFSs:
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1. The WF (f ) is conic in the sense that it remains invariant under the action
of dilatations, i.e. when one multiplies the second variable by a positive
scalar. If (x, k) ∈ WF (f ) then (x, λk) ∈ WF (f ) for all λ > 0.

2. From the definition of the wavefront set, it follows that the projection onto
the first coordinate π1(WF (f )) → x, consists of those points that have no
neighborhood whereon u is a smooth function, and the projection onto the
second coordinate π2(WF (f )) → �x(f ), is the cone around k attached
to a such point denoting the set of high-frequency directions responsible
for the appearance of a singularity at this point.

3. The WFS of a smooth function is the empty set.
4. For all smooth function φ with compact suport WF (φf ) ⊂ WF (f ).
5. For any partial linear differential operator P , with C∞ coefficients, one

has

WF (Pf ) ⊆ WF (f ) .

6. If f and g are two distributions belonging to D
′(Rd ), with wavefront set

WF (f ) and WF (g), respectively; then the wavefront set of (f + g) ∈
D

′(Rd ) is contained in WF (f ) ∪ WF (g).

In the perturbation scheme of quantum field theories, one finds formal op-
erations on distributions which can be in general not well-defined. In order to
give precise statements on the existence of the product of these distributions, we
appeal to a criterion based on the WFS of the distributional factors the so-called
Hörmander’s Criterion. Let u and v be distributions; if the WFS of u and v are
such that the following direct sum

WF (u) ⊕ WF (v)
def= {

(x, k1 + k2) | (x, k1) ∈ WF (u), (x, k2) ∈ WF (v)
}

, (2.2)

does not contain any element of the form (x, 0), then the product uv there exists
and WF (uv) ⊂ WF (u) ∪ WF (v) ∪ (WF (u) ⊕ WF (v)). Hence, the product of
the distributions u and v is well-defined around x, if u, or v, or both distributions
are regular in x. Otherwise, if u and v are singular in x, the product can still exist
if the sum of the second components from WF (u) and WF (v) related to x can be
linearly combined with nonnegative coefficients to vanish only by a trivial manner.

Example 2. The distributions u, v ∈ D
′(R), u(x) = 1

x+iε
and v(x) = 1

x−iε
, with

the Heavyside distributions û(k) = −2πiθ (−k) and v̂(k) = 2πiθ (k) as their
Fourier transforms, have the following WFSs:

WF(u) = {

(0, k) | k ∈ R
−\0

}

, WF(v) = {

(0, k) | k ∈ R
+\0

}

.

Thus, from the Hörmander’s Criterion one finds that there exist the powers of un

and vn. However, the product between u and v do not match the criterion above
and do not exist. This example clearly indicates that one can multiply distributions
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even if they have overlapping singularities, provided their WFSs are in favorable
positions. Such an observation is significant because it makes clear that the problem
is not only where the support is, but in which directions the Fourier transform is
not rapidly decreasing!

Example 3. The Feynman propagator for massive scalar field

	F(x)
def= θ (x0)	+(x; m2) − θ (−x0)	−(x; m2) , (2.3)

can have its WFS constitution studied from the WFS of the Wightman functions,

WF(	±) = {

((0, 0); (±λ|k|,∓λk)) | (k �= 0) ∈ R
3, λ ∈ R+

}

∪{

((|x|, x); (±λ|k|,∓λk)) | x, (k �= 0) ∈ R
3, λ ∈ R+

}

, (2.4)

∪{

((−|x|, x); (±λ|k|,∓λk)) | x, (k �= 0) ∈ R
3, λ ∈ R+

}

,

and from the WFS of θ (±t ∓ t ′) def= θ±,

WF (θ±) = {

((0, x); (±λk0, 0)) | x ∈ R
3, k0 ∈ R, λ ∈ R+

}

. (2.5)

One can easily conclude that is not possible to form a non trivial linear combination
with non-negative coefficients in order to produce a vanishing second component
in the direct sum of the WFSs above. So,

(x, 0) �∈ WF (θ±) ⊕ WF (	±) . (2.6)

Therefore, from the Hörmander’s criterion, the Feynman propagator can be well-
defined in terms of the product above and

WF (θ± · 	±) ⊂ WF (θ±) ∪ WF (	±) ∪ (WF (θ±) ⊕ WF (	±)) . (2.7)

However, in the powers (	F)n there exist products like 	+	− and from (2.4),
one can see that (x, 0) ∈ WF (	+) ⊕ WF (	−) and it occurs for the singular point
x = 0. In this sense, one must be careful when manipulating such products. In
fact, they are known to exist anywhere, except at x = 0. Such an ill-definition,
manifested as divergences, requires the treatment of the renormalization. Notice
further that

(x, 0) �∈ WF (	±) ⊕ WF (	±). (2.8)

In particular, it can be used

	±(x; m2) = ±i

(2π )3

∫

d4k1 θ
( ± k0

1)δ(k2
1 − m2

)

e− ik1x ,

and ̂	±(k1, k2) = ±i(2π )4δ(k1 + k2)θ (±k0
1)δ(k2

1 − m2) as a representation of the
Fourier transform, to verify that the wavefront set of Feynman propagator has the
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following covariant form (Radzikowski, 1996a,b):

WF(	F) = {

(x1, k1); (x2, k2) ∈ (R1,3 × R
1,3 \ 0) | x1 �= x2, (x1 − x2)2 = 0,

k1 ‖ (x1 − x2), k1 + k2 = 0, k2
1 = 0, k0

1 > 0 if x1 � x2 and

k0
1 < 0 if x1 � x2

} ∪ {

(x1, k1); (x2, k2) ∈ (R1,3 × R
1,3 \ 0) | x1 = x2,

k1 + k2 = 0, k2
1 = 0

}

,

where we have used the notation that x1 � x2 if x1 − x2 is in the convex hull of
the forward lightcone and x2 � x1 if x1 − x2 is in the convex hull of the backward
lightcone. Notice that the condition k0

1 > 0 if x1 � x2 and k0
1 < 0 if x1 � x2 in

WF (	F) ensures the existence of products of Feynman propagators at all points
away from diagonal, while these products do not satisfy the Hörmander’s criterion
for multiplication of distributions over the points of the diagonal, since the sum
of the second components of the WFS on the diagonal can add up to zero.

3. RENORMALIZATION OF DISTRIBUTIONS IN FTFT

In order to study the structure of the renormalization scheme in FTFT, we turn
to the analysis of distributions and their products present in the perturbation series.
The existence of such products are checked out via the Hörmander’s criterion based
on its WFSs. Keeping in mind the renormalization procedure as an extension
problem (Brunetti and Fredenhagen, 2000; Popineau and Stora, 1982) together
to the its inherent arbitrariness governed by scaling degree and singular order of
distributions (Brunetti and Fredenhagen, 2000; Steinmann, 1971), the perturbation
expansion is further discussed. Without loss in generality, let us consider the case
of a single, scalar field φ(x) in FTFT associated to spinless particles with mass
m > 0,4 whose propagator is given by:

Gc(x, x ′) = θc(t − t ′)〈̂φ(x)̂φ(x ′)〉 + θc(t ′ − t)〈̂φ(x ′)̂φ(x)〉 . (3.1)

The brakets 〈· · ·〉 stand for statistical average related to states of a complete or-
thogonal basis in Fock space. The index “c” accounts for the contour ordering
in the complex time plane-t (t = x0 + ix4) whose the imaginary and real parts
are interpreted to be the inverse temperature and actual time respectively. For the
contour ordering prescription given by θc(t − t ′), it is supposed that the contour
“c” is monotonically increasing and regular, parameterized by a parameter τ ∈ R

C = {t ∈ C | Re t = x0(τ ), Im t = x4(τ ), τ ∈ R} and θc(t − t ′) = θ (τ − τ ′). The
spectral decomposition of ̂φ in terms of plane waves has the ordinary form

4 The generalization of the present prescription to any field with arbitrary spin is straightforward.
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(Landsman and Weert, 1987):

̂φ(x) =
∫

d3k
(2π )32ωk

[

ake
−ikx + a

†
k e

ikx
]

, (3.2)

where k0 = ωk = (|k|2 + m2)1/2. For compatibility with FTFT, we must include
the statistical distribution of the particles associated. For a single, scalar field φ(x)
we introduce the Bose-Einstein statistic given by N (k0) = [eβk0 − 1]−1. In this
case, combinations of creation and annihilation operators are given by (Landsman
and Weert, 1987):

〈a†
k ak〉 = (2π )32ωkN (ωk)δ(k − k′)

〈aka
†
k 〉 = (2π )32ωk [N (ωk) + 1] δ(k − k′) , (3.3)

with the combinations of two creation or two annihilation operators vanishing.
The correlation functions C>(x, x ′) = 〈̂φ(x)̂φ(x ′)〉 = C<(x ′, x) turns to have the
following spectral expansion

〈̂φ(x)̂φ(x ′)〉 =
∫

d4k

(2π )4
e−ik(x−x ′)ρ(k) [1 + N (k0)] ,

where ρ(k) = 2π [θ (k0) − θ (−k0)] δ(k2 − m2). Their Fourier transforms, related
by C̃<(k) = ρ(k) [N (k0) + 1] = eβk0C̃>(k), can be used in order to write the
contour ordered propagator in the form (Landsman and Weert, 1987):

Gc(x, x ′) =
∫

d4k

(2π )4
e−ik(x−x ′)ρ(k)

[

θc(t − t ′) + N (k0)
]

. (3.4)

Another useful form is obtained after integration on k0,

Gc(x, x ′) = θc(t − t ′)
∫

d3k
(2π )32ωk

{

[N (ωk) + 1] e−ik(x−x ′) + N (ωk)eik(x−x ′)
}

+ θc(t ′ − t)
∫

d3k
(2π )32ωk

{

[N (ωk) + 1] eik(x−x ′) + N (ωk)e−ik(x−x ′)
}

.

(3.5)

Although each possible contour would correspond to a specific formalism of
FTFT, there are restrictions on the contours due to the necessary analyticity of the
correlation functions and the KMS condition (Landsman and Weert, 1987). These
conditions cause the support of the two point function to be analytic on the strip
given by −β ≤ Im (t − t ′) ≤ β, which on the closure the distributional character
takes place. Furthermore, for the analyticity of C>(x, x ′), which because of the
factor θc(t − t ′) has vanishing contributions to the propagator (3.1) if t ′ succeeds
t on C, it is required that −β ≤ Im (t − t ′) ≤ 0. Conversely, for the analyticity of
C<(x, x ′), with factor θc(t ′ − t), it is required that 0 ≤ Im (t − t ′) ≤ β. Combining
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both relations one can conclude that if the complex time t1 succeeds t2 on C, then
there follows that Im t2 ≥ Im t1 which imposes that C must have a non increasing
imaginary part. In other words, C must have constant or decreasing imaginary
part. This is called the monotonicity condition.

At this point, once the adopted approach does not depend on Feynman graph-
ics calculations, we can proceed the analysis without the need in specializing to
Minkowiskian RTF or Euclidean ITF parameterizations of the contour. From (3.5)
we select two typical distributions a temperature dependent piece, G

(c)±
mat , and

a temperature independent piece, G(c)±
vac , whose labels refer to matter piece and

vacuum piece, respectively:

G
(c)±
mat (x, x ′) =

∫

d3k
(2π )32ωk

N (ωk)e∓ik(x−x ′) ,

G(c)±
vac (x, x ′) =

∫

d3k
(2π )32ωk

e∓ik(x−x ′) .

In terms of these distributions, the general contour propagator turns to be

Gc(x, x ′) = θc(t − t ′)
[

G
(c)+
mat (x, x ′) + G(c)+

vac (x, x ′) + G
(c)−
mat (x, x ′)

]

+ θc(t ′ − t)
[

G
(c)−
mat (x, x ′) + G(c)−

vac (x, x ′) + G
(c)+
mat (x, x ′)

]

.

(3.6)

The structure of the propagators of FTFT suggests that, at a given order
in perturbation series, the crossing products between matter and vacuum pieces
would produce qualitatively different divergences. Furthermore, one could expect
it to have also a proliferation of divergent terms. Another possible distinction
between FTFT and QFT version would be on the amount of arbitrariness through
the contribution to the singular order besides the establishment of a temperature
dependent renormalization extension problem. We are going to verify that in
some sense the fact above does occur. The perception of either of these points
and their consequences would become more difficult or not depending on the
renormalization procedure adopted.

We now turn to investigate the divergent content of the distributions G
(c)±
mat(vac)

by calculating their WFSs.

Theorem 1. Only the temperature-independent part contributes to the
WF (Gc).

Proof: We proceed the prove using the stationary phase method (see for exam-
ple (Reed and Simon, 1975), Section IX.10). The phases of the distributions above
have all the same form ∓ik(x − y). It is useful to unify the notation as much as
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possible and represent them all by defining the following integral

G
(c)±
mat(vac) =

∫

d3k
(2π )3

f̃mat(vac)(k; m2, β)

2ωk

e∓i[ω(t−t ′)−k·(x−x′)] , (3.7)

where f̃mat(k; m2, β) = N (ωk) and f̃vac(k; m2, β) = 1. One can define the phase
function ϕ±,

ϕ±(k, x − x ′) = ± [

(t − t ′)|k| − (x − x′) · k
]

, (3.8)

to obtain the following oscillatory integrals for the distributions:

G
(c)±
mat(vac) =

∫

d3k
(2π )3

a±mat(vac)(t − t ′, |k|; m2)e−iϕ±(k,x−x ′) . (3.9)

where

a±mat(vac)(t − t ′, |k|; m2) = f̃mat(vac)(k; m2, β)

2ωk

e∓i[(ω−|k|)(t−t ′)] (3.10)

is the asymptotic symbol. From the definition of the phase function (3.8), one can
easily see that it must be such that Im (t − t ′) ≤ 0. Then, had the monotonicity
condition not previously selected the possible contours, the ϕ± would be ill-
defined. Both are in fact manifestations of the necessary analyticity of the Green
functions. The directions along which the phase in the integrand do not vary
satisfying ∂kϕ± = 0 give us the following critical set,

Cϕ± = {

(x − x ′ = (0, 0), k) | (k �= 0) ∈ R
4}

∪{

(x − x ′, k) | (x − x′ ‖ k �= 0) ∈ R
3, (t − t ′) ∈ C, k · (x − x′) > 0,

Re (t − t ′) = |x − x′|, Im (t − t ′) = 0
}

∪{(

x − x ′, k
) | (x − x′ ‖ k �= 0) ∈ R

3, (t − t ′) ∈ C, k · (x − x′) < 0,

Re (t − t ′) = −|x − x′|, Im (t − t ′) = 0
}

.

Though there is the restriction to those terms in (3.6) which satisfy the
monotonicity condition, from the additional condition Im (t − t ′) = 0, one can
see that there are no contributions coming from the pieces of the contour with
non-vanishing imaginary part. It has important consequences in the analysis of
the WFS for the ITFs. Because the set of singular points of the WFS is a subset
of Cϕ±, and the ITF-like pieces of the contour are such that Im (t − t ′) > 0, one
can conclude that the WFS associated to ITF correlation functions are empty. The
stationary phase manifold �ϕ is the set of points of the critical set having the non
vanishing four momentum component given by the gradients ∂µϕ+ = (|k|,−k)
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and ∂µϕ− = (−|k|, k). Then,

�ϕ± = {

(x − x ′ = (0, 0), (±λ|k|,∓λk)) | k �= 0 ∈ R
3, λ ∈ R+

}

∪{

(x − x ′, (±λ|k|,∓λk)) | (x − x′ ‖ k �= 0) ∈ R
3, (t − t ′) ∈ C,

λ ∈ R+, k · (x − x′) > 0, Re (t − t ′) = |x − x′|, Im (t − t ′) = 0
}

∪{

(x − x ′, (±λ|k|,∓λk)) | (x − x′ ‖ k �= 0) ∈ R
3, (t − t ′) ∈ C,

λ ∈ R+, k · (x − x′) < 0, Re (t − t ′) = −|x − x′|, Im (t − t ′) = 0
}

.

(3.11)

The result above can be interpreted as the set of pairs of which the critical character
of the phase is such that it breaks certain natural tendency of the integrals to
converge due to its oscillatory character (see Riemann-Lebesgue Lemma (Reed
and Simon, 1975)). Such pairs are, therefore, suspect to be responsible for some
bad behavior of the oscillatory integral. This implies that WF (G(c)±) ⊆ �ϕ±
(again, see Section IX.10 in (Reed and Simon, 1975)). Because we are still able
to save the convergence in some or even in all those critical directions, there
remains to be studied the contributions of the asymptotic symbols, a±mat(vac) and,
in particular of f̃mat(vac), to the convergence of the integrals. For the temperature
dependent part, to every possible contribution considered in the stationary phase
manifold (3.11), the exponential factor eβωk in the denominator of the integrand
f̃mat(k; m2, β) = N (ωk) assures the condition for a fast decreasing function (see
Sec. 2) to be fulfilled in every of those critical directions. This guarantees the
existence of the oscillatory integral and characterizes G

(c)±
mat to be a smooth function.

Its WFS contribution is then empty. However, in the case of the vacuum piece,
f̃vac(k; m2, β) = 1, the factor 1

ωk
does not suffice to assure the asymptotic fast

decrease in none of those critical directions. So, every pair in �ϕ± turns to be an
element of the WFS. Therefore we have

WF
(

G(c)±
vac

) = �ϕ± and WF
(

G
(c)±
mat

) = ∅ . (3.12)

Hence, there are no contributions coming from the matter temperature-dependent
part to the WF (Gc). �

It perhaps is necessary to emphasize that the G(c)±
vac has exactly the same

singular spectrum as the Wightman function 	±, in Eq. (2.4), for of the ordinary
QFT. Thus, we have settled that

WF
(

G(c)±
vac

) = WF (	±). (3.13)
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There follows then the same rules discussed for 	±, in particular, for the product
θ± · G(c)±

vac one has

WF
(

θ± · G(c)±
vac

) = WF (θ± · 	±) and (x, 0) �∈ (WF (θ±) ⊕ WF
(

G(c)±
vac )

)

,

(3.14)

what characterizes it as well-defined and consequently, from the results of the
condition of the Hörmander’s criterion (2.2),

WF
(

θ± · G(c)±
vac

) ⊂ WF(θ±) ∪ WF
(

G(c)±
vac

) ∪ (

WF (θ±) ⊕ WF (G(c)±
vac )

)

= WF (θ±) ∪ WF (	±) ∪ (WF (θ±) ⊕ WF (	±)) . (3.15)

Because G
(c)±
mat is a smooth function from the Property 4 in Remarks 1, the product

θ± · G
(c)±
mat is such that

WF
(

θ± · G
(c)±
mat

) ⊂ WF (θ±) and (x, 0) �∈ WF (θ±) . (3.16)

For this reason, in view of (3.14), (3.15) and (3.16), the FTFT contour propagator
G(c), (3.6), is well-defined as sum of well-defined products. From the Property 6
in Remarks 1. and (2.7), we have that

WF(G(c)) ⊂ [

WF(θ+) ∪ WF(	+) ∪ (WF(θ+) ⊕ WF(	+)) ∪
∪ WF(θ−) ∪ WF(	−) ∪ (WF(θ−) ⊕ WF(	−))

] ⊃ WF(	F ) .

(3.17)

On the other hand, in the higher orders of the perturbation calculations there arise
products of propagators. In special, let us consider those terms in which there are
products like G(c)+

vac · G(c)−
vac . From (3.12) one can see that in the same way of the

ordinary QFT for 	+,

(x, 0) ∈ WF
(

G(c)+
vac

) ⊕ WF
(

G(c)−
vac

)

. (3.18)

It does not match the condition for the Hörmander’s criterion. Indeed, this is also
an ill-defined product if the support of the distributions include x = 0, what turns it
to be a problem to be treated through the renormalization procedure. But products
like G

(c)s
mat · G

(c)s ′
mat and G

(c)s
mat · G(c)s ′

vac , where s, s ′ = (+,−), are well-defined because
G

(c)s
mat are smooth functions. Therefore, by considering products of propagators in

the FTFT, both in RTF and ITF, one can expect that the presence of the matter piece
does not contribute to generate ill-defined terms beside those already found in the
ordinary QFT. Nevertheless, in the higher orders in the perturbation expansion,
it appears as temperature-dependent factors to the ordinary divergences. Roughly
speaking, although the ill-defined products are the same as the QFT ones, they
appear with temperature-dependent factors.

Another aspect of the renormalization concerns the arbitrariness or ambi-
guity of the process and its relation to physical symmetries. The amount of
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arbitrariness is governed by the singular order and scaling degree of the dis-
tributions involved (Steinmann, 1971)-(Brunetti and Fredenhagen, 2000). Once
for G

(c)±
mat ,

(

G
(c)±
mat

)

λ
= G

(c)±
mat (λ(x − x ′); m2, β)=

∫

d (d−1)k′

(2π )3 2ωk′
N (ωk′)e∓ik′λ(x−x ′)

= λ2−dG
(c)±
mat (x − x ′; λ2m2, λ−1β) ,

then, one has ω ≥ d − 2, the scaling degree is σ (G(c)±
mat ) = d − 2 and singular

order is �(G(c)±
mat ) = −2. Notice further that

�
(

Gc±
mat

) = �(	±) = �
(

G(c)±
vac

)

. (3.19)

Hence, for the FTFT propagator G(c) in (3.6), we obtain that

σ
(

θ±Gc±
mat(vac)

) = σ (G(c)) = σ (	F ) = d − 2 , (3.20)

�
(

θ±Gc±
mat(vac)

) = �(G(c)) = �(	F ) = −2 . (3.21)

We shall analyze, as a representative case of the higher order product in the
perturbation series, the square of the propagator associated to the branch of the
contour which is parameterized forward in the real time only. We consider again
the products of propagators arising in the perturbation series. For the products like
G

(c)s
mat · G

(c)s ′
mat , G

(c)s
mat · G(c)s ′

vac and G(c)s
vac · G(c)s ′

vac we have

σ
(

G
(c)s
mat(vac) · G

(c)s ′
mat(vac)

) = 2(d − 2)

�
(

G
(c)s
mat(vac) · G

(c)s ′
mat(vac)

) = 2(d − 2) − d. (3.22)

The scaling degree and the singular order are the same for both the matter or
vacuum pieces products. In view of this, one can see that the singular order deter-
mines the number of arbitrary coefficients (counter terms) in the renormalization
procedure. As a simple example, let us examine an 1-loop diagram in g

4!φ
4, a

truncated 4-point diagram with two internal lines connecting two different vertex,

�(4) ∼ g2[G(c)(x − x ′)]2 = g2

{

∑

s=+,−
θsθsG(c)s

vac G(c)s
vac +

∑

s=+,−
θsθ−sG(c)s

vac G(c)−s
vac

+ 2
∑

s s ′
θsθsG(c)s

vac G
(c)s ′
mat + 2

∑

s s ′
θsθ−sG(c)s

vac G
(c)s ′
mat

+
∑

s s ′s ′′
θsθsG

(c)s ′
mat G

(c)s ′′
mat +

∑

s s ′ s ′′
θsθ−sG

(c)s ′
mat G

(c)s ′′
mat

}

.

(3.23)



396 Franco and Acebal

Notice that the sum of products of distributions falls into different categories. As
it was shown from (3.12) to (3.18) and in the chain of reasoning just after, the only
term which exhibits an ill-defined product is the second one. That product is well-
defined elsewhere, except at x − x ′ = 0. This is the target of the renormalization in
the present case. The degree of arbitrariness is governed by (3.22) and the number
of counter terms is limited by certain physical symmetries.

Next, we consider an overlapping higher loop with three internal lines con-
necting two vertices,5

�(2) ∼ g2[G(c)(x − x ′)]3 .

One finds an abundance of ill-defined terms as compared to the ordinary QFT
case. There will appear ill-defined products like

θsθsθ−sG(c)s
vac G(c)s

vac G(c)−s
vac and θsθsθ−sG

(c)s
matG

(c)s
vac G(c)−s

vac .

The former suffers from the same illness as the second term of (3.23), though
it has a different degree and it is also to be treated in a temperature-independent
fashion. The latter, due to the presence of a matter piece factor, in view of (3.22),
could indicate a temperature-dependent renormalization problem. However, from
(3.12) and (3.18), one can easily see verify that such an ill-definition is due to the
product of vacuum pieces only. Notice that this term was treated in a temperature-
independent way in the lower order term (3.23) and that the temperature-dependent
part appears as simple factor. For the general case of the doubling of degrees of
freedom with contour parameterized both forward and backward in the real time,
the analysis is similar.

This quantitative analysis has shown that, despite the existence of
temperature-dependent factors multiplying the ill-defined products, from the point
of view of the renormalization problem, it can be treated order by order as a vacuum
renormalization problem. Furthermore, the degree of arbitrariness in the process
for a given order is limited by the singular order of the temperature-independent
piece and, from products of them, there arise at each order an ill-defined product
that is leading in singular order and degree of arbitrariness. This makes clear that
the matter piece, being absent from a singular spectrum, cannot include any new
contribution to FTFTs concerning the category of ill-defined products yet found
in the ordinary QFT.

4. CONCLUSIONS

The results concerning the renormalization of FTFT has been extensively ana-
lyzed in the literature. The present contribution lies on the method which allows us

5 Others Feynman diagrams can be composed by convolutions of propagators. In essence, the presence
of convolutions contribute to the well behavior of the product of distributions, by decreasing the
singular order and improving the fast decay of the symbols.
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to clarify some points in the comparison between QFT and FTFT renormalization.
The problem of the divergences was faced from the ground by the mathematical
study of the basic ill-defined products distributions, i.e., the lack of definition of the
distributional product on the coinciding points. An important role was played by
the microlocal analysis. By using the Hörmander’s criterion, based on the WFSs
of distributions, we have shown that the contribution to form ill-defined products
comes from the temperature-independent pieces only. Hence, the matter piece does
not contribute to form divergent terms though it can appear as factors of the diver-
gent ones. The structure of the propagators of FTFT, being separable into vacuum
and matter pieces turns easy the analysis of the ill-defined products. As a matter
of fact, one shows that the separation also generates an increasing on the number
of ill-defined products in the perturbation series due to the mixing of these factors
in crossing products in the higher order terms of the perturbation expansion. The
matter piece appears then as temperature-dependent factors of ill-defined products
vacuum pieces in the higher orders of the perturbation series. Focusing on the
perturbation series, the degree of arbitrariness in the process for a given order is
determined by the temperature-independent ill-defined product leading in singular
order. Hence, the problem of the extension reduces at each order to the analogous
one of the ordinary QFT. Consequently, it is proved that the amount of arbitrariness
in the renormalization procedure, as well as the type of the ambiguities, if conve-
niently treated, remains the same when passing from a given QFT to the associated
FTFT version. The perception of either of these points and their consequences
could be difficult or not depending on the renormalization procedure adopted.

Applications of the results given in this paper will appear in a coming
paper (Franco and Acebal), where we study the renormalization of the eletromag-
netic and gravitacional couplings of an electron which is immersed in a heat bath
under the light of the scheme of Brunetti-Fredenhagen-Holland-Wald (Brunetti
and Fredenhagen, 2000; Hollands and Wald, 2001,2002), who have demonstrated
renormalizability of QFTs satisfying the requirements of Weinberg’s theorem on
general curved space-times using a microlocal adaptation of the Epstein-Glaser
approach. Our aim is to clarify the connection between microlocal analysis and
the area of QFT at a finite temperature.
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